ICT & Computer Science – Curriculum Progression from KS3 to KS5

KS2 KS3 KS4 Block Programming Introduction to Syntax based programming: Fully focus on text based programming and Introduction of higher	KS5 gher-level programming
Block Programming Introduction to Syntax based programming: Fully focus on text based programming and Introduction of higher	gher-level programming
(Scratch, Beebots) Using HTML to focus on syntax without including algorithmic concepts set). Using a Trial and Error Approach. Very Visual so students clearly see the impact of their changes. Also relevant to the information Technology Trend (Creating a product based on a client brief Purpose and target audience, combining assets) Using Python Turtle (as it is similar to the Beebot programming task from KS2) but this time using Python (text-based programming) Python Turtle also is a good visual aportach to introduce sequencing, selection, nuclease and iteration. Then text-based programming based on input/proces/joutput of a small algorithm, reproducing an algorithm and testing it to identify and fix syntax errors independently. Students start modifying the code/completing/adapting incomplete code more independently based on similar tasks. Math. Concepts: Arithmetic calculations, x,y Students sand server and a programming aportach to independently based on similar tasks.	ogramming paradigms: OG, SQL) ascript) aced primitive and non- uctures (Hash Tables, Stack, rrays, Binary Trees, BST, algorithms based on these data er project based on the System Application Development lying Problem Decomposition, algorithmic Thinking using tion, Iteration, Recursion and ectiveness of an algorithm using n (Time and Space complexity) erver technologies and web- programming languages (HTML, t) and server side (brief ap and SQL) blems using an algorithms aces, Frequency analysis, Short ecision maths). Using Maths concepts in an algorithm (3D parabolic trajectory)

Students use tablets smartphones, laptor, and desktop computers Students identify and use a range of input/output and storage devices. Students connect to a Network either wirelessly or using Ethernet cables	Identify the main computer hardware elements (including inside the computer: motherboard, CPU, RAM, hard drive, SSD Drive) and input/output/Storage Devices). They investigate the main purpose of each component They can describe basic characteristics/specification for some of these components (e.g a 256GB Hard Drive, a 3.5GHz CPU) (e.g. Buying computer components spreadsheet task) They can identify and describe the main purpose of network components (Router, switch firewall, WAP, NiC card) and start looking at Star Network topologies for a LAN They can name wired and wireless connection methods (Ethernet Cable, Optic fibre, 4G/5G, WiFi, Blutooth)	Identify and describe the main characteristics of the main hardware components that make up a computer system. (Input/Process/Storage/Output) Investigate CPU architecture: Concepts of transistors, logic gates (link to binary data), components of the CPU and concept of FDE cycles. Characteristics of the CPU (clock speed, number of cores, amount of cache) Investigate key characteristics of primary and secondary memory and compare different secondary device technologies and devices to be able to recommend and justify the most suitable storage devices for a given context. They can identify and describe the main purpose of network components and design a small network topology using the Star and Mesh topologies for a given scenario Investigate TCP/IP networks including the TCP/IP Stack and Protocols for each layer of the TCP/IP Stack. Students are introduced to key networking concepts including Packet Switching, use of IP and MAC addresses, use of Domain Name Servers, encryption etc.) and they can identify the main network security threats and methods used to protect a network from these threats. Students investigate different format to store and transfer data including CSV files and flat files databases. They can use SQL to select data from a single table.	Study CPU architecture and the evolution of computers since the 1950's comparing the characteristics of the 4 generations of computers. Study logic gates circuits used inside the ALU, the control unit and the memory unit of the CPU, including full adder circuits and D-Type Flip-Flop circuits. Compare the main characteristics of different CPU architectures (Von Neuman, Harvard and contemporary CPU architecture, RISC and CISC architecture) Use LMC to program the CPU and evaluate the impacts of the FDE cycle on the registers when running an LMC program. They can identify and describe the main purpose of network components and design a small network topology using the Star and Mesh topologies for a given scenario, justifying their choice of hardware and topologies and identifying benefits and drawbacks and possible improvements for a given network design Students investigate key networking concepts including Packet Switching, use of IP and MAC addresses, use of Domain Name Servers, protocols and layers of the TCP/IP Stack etc.) They also investigate the main network security threats and methods used to protect a network from these threats. They investigate a range of symmetric and asymmetric encryption techniques. Students investigate different format to store and transfer data including CSV files, XML, JSON and relational databased. They learn key relational databased. They learn key relational database concepts and can draw an Entity Relationship Diagram for a given scenario. They can use SQL to write queries to select, insert, update or delete data from a relational database

Students use digital	Stu
data (text, pictures,	a co
sound and video	ma
clips) and digital	und
devices (smart	on
phones, tablets,	TVs
digital camera, etc).	

Students can express that digital data is data that a computer system can process and that it is made of binary code (Os and 1s). They understand that more and more technologies rely on digital data (Computers, Digital cameras, smart TVs, smart Speakers, smart Phones, DAB Radios)

They learn how to convert numbers from 0 to 255 into binary using 1 Byte

They use the ASCII code to convert text into binary.

They learn about the RGB code used to convert bitmap pictures into binary.

Students learn about storage units: KB, MB, GB, TB used to express the storage capacity of a storage device or the size of a file.

By studying the role of transistors and logic gates inside the CPU, students understand the reason why computers can only process digital data.

Students convert numbers from denary to binary and from binary to hexadecimal and vice versa. They can perform basic operations with binary data such as binary additions and binary shifts.

They understand the need for different character sets (ASCII code and Unicode) to store text and the relationship between the number of bits per character and the number of characters available in a set.

Students understand how bitmap pictures are stored a binary and the impact of colour depth and resolution on the file size and quality.

Students understand how sound files are stored as a collection of samples and the impact of sample rate and bit depth on the file size and quality.

Students understand basic concepts of lossy and lossless compression and can estimate the size of a text file, picture file and sound file based on various criteria.

Students can also perform storage requirements calculations using the storage units introduced at KS3 (KB,MB,GB,TB)

Students understand the concept of transfer speed (bandwidth) and the impact of file size and connection speed when connecting to the Internet. Students investigate a range of logic gates diagrams used to process binary data (Binary addition, binary shifters, D-Type Flip Flop logic gates, 1-BIT ALU, binary Decoder and Multiplexers)

Students use Sign Magnitude and 2'Cs notation to convert negative numbers in binary and they use the Normalised Floating Notation to convert decimal numbers into binary.

Students investigate a range of hashing, encoding, compression and encryption algorithms. Students investigate Error Detection methods such as Check Digit, Parity Bit and checksum used when transferring data over a network (e.g. TCP protocol)

They understand the need for different character sets (ASCII code and Unicode) to store text and the relationship between the number of bits per character and the number of characters available in a set.

Students understand how bitmap pictures are stored a binary and the impact of colour depth and resolution on the file size and quality. Students understand how sound files are stored as a collection of samples and the impact of sample rate and bit depth on the file size and quality. Students understand the concepts of lossy and lossless compression and investigate different lossy and lossless compression techniques including run-time encoding, dictionary coding and Huffman Coding.

Students can also perform storage requirements calculations using the storage units introduced at KS3/4 (KB,MB,GB,TB)

Students understand the concept of transfer speed (bandwidth) and the impact of file size and connection speed when connecting to the Internet.

Pupils use standard	Students start with a unit focusing on becoming	Students analyse and interpret a client brief to	tudents analyse and interpret a client brief for
application software	confident user of the main application software	define a range of design consideration when	two internally assessed coursework projects.
(e.g. MS Word, MS	used in school (e.g. MS Office, Office 365,	planning and designing their assets. From the	Students will work closely with a client to
PowerPoint, MS	Sharepoint, OneDrive)	client brief, they identify the target audience and	complete the full project management cycle. This
Excel) to create basic		purpose of their products.	includes:
documents and	When using application software to create assets,		1) Identifying problems and determining what is
manipulate text,	students do so taking into consideration the	They collect a range of asset and use a range of	feasible
number and pictures	target audience and purpose of their document.	techniques to re-purpose their asset when relevant	2) Developing a series of attainable goals
	They use a range of formatting techniques	(changing resolution, re-colouring, removing	3) producing a range of planning documents in
Pupils also use	effectively based on the purpose and target	background, cropping, trimming a clip, etc)	line with client expectations.
alternative apps and	audience. (e.g. "School Trip project": Formatting		4) Create a clear plan of action, allowing them to
web based	techniques used to write a formal letter to	They understand the impact of copyright laws	mitigate any risks or problems that may occur.
application to	parents in MS Word as opposed to formatting	when selecting secondary products. (Using	5) Time management skills to ensure the project
complete basic tasks	techniques used within a SlideShow to be used in	copyrighted assets, using royalty-free assets, using	and the milestones are completed at specific
	an assembly to advertise a school trip)	public domain assets)	points.
Pupils can combine			6) The execution of project which has
different assets (e.g.	Students also analyse a given client brief to	Students also use specialised software (graphic	decomposed into manageable tasks.
picture files) into	identify key user requirements (design and	editing, photo-editing, video editing, audio editing)	7) Testing to ensure the project is suitable for
their work	content) to create a complex product (website	to create primary assets or edit secondary assets.	purpose and functional
	and interactive multimedia product) using a range		8) Liaising with the client and evaluating their
Pupils can save their	of primary and secondary assets	They understand the characteristics of different file	own performance
work on the school		formats for a range of assets (graphics, audio,	
system	Students use mainly standard application	video, animation) and can select the suitable file	They analyse existing real-world businesses to
	software and start using more specialised	type when saving/exporting/converting their	gain insight into what a successful campaign
	software such as Photoshop to apply graphic	assets and/or products.	looks like. They identify goals for businesses and
	design and photo-editing techniques when		evaluate their performance based on the content
	creating or editing graphics.	They use a range of pre-production techniques to	produced.
	Chudanta anns thair sugar suite ha faldan	plan ahead the production of their products. This	After conducting research and pinpointing the
	Students save their work using a suitable folder	includes moodboards, mindmaps, stie maps,	criteria for a successful social media campaign,
	structure with guidance from the teacher.	sketches, wireframe diagrams, visualisation	students are enlisted by a business to develop a
		diagrams, storyboards, scripts and plan ahead the	strategy of their own.
		production stage (e.g. work plan)	Students can identify and use a range of software
		Students use a suitable felder structure to ergenice	angaging and norsulative content. This includes
		all their files and use consistent file naming	locally installed programs and cloud based
		convention and version control when saving their	services
		files	Students learn about the relevant legislation and
		inco.	how the husiness they are working for will be
		Students test and evaluate the effectiveness of	affected by it
		their products, referring back to the client	
		brief/user requirements/target audience and	
		purpose of their products.	

IT & iMedia

Pupils learn how to	Pupils become more confident and independent	Pupils become more confident and independent in	Same as for KS4 within a business context.
search the web and	in their ability to search the web and	their ability to search the web and select/retrieve	
select/retrieve	select/retrieve information (text and pictures).	information They can refine web search queries	More focus on legal implications for businesses
information (text and	They can refine web search queries using the	using the relevant keywords and advanced search	(Data Protection Act, Computer Misuse Act,
pictures)	relevant keywords and search techniques.	techniques. Students can use both search engines	Copyright Design & Patent Act) when using or
		and royalty free content sharing websites.	designing ICT systems and/or assets.
Pupils discuss safe	They start considering the reliability of the	Students understand the impact of copyright	
practice when using	information found understanding the concepts of	legislation when selecting information or assets for	Students can define an IT and Network policy to
the Internet. (e-	information bias, facts vs opinions, purpose of	their projects and maintain a source table to	identify safe working practice relevant to a
Safety)	information.	indicate the source and copyrights implications of	business context, taking into consideration
		the assets they use in their projects.	network security concepts, e-safety, health &
Pupils can save their	They can identify and recommend techniques on		safety when using IT equipment/working in an
work using	how to stay safe when using the Internet	Students consider the reliability of the information	office based environment, and legal
appropriate files	including how to choose a strong password, what	found understanding the concepts of information	considerations.
names	information is personal, how to access privacy	bias, facts vs opinions and purpose of information.	
	settings, how to block and report	They also take into consideration factors affecting	
Pupils can use a	abuse/cyberbullying/trolling/grooming/sexting.	the quality of an asset (file type, resolution) based	
range of application	They learn about network threats such as viruses,	on their needs for their project. They can	
software (incl MS	trojan horses, identity thefts, phishing emails.	repurpose sourced assets if needed.	
Office suite) and			
web-based	Students learn how to save files using a folder	Students use a suitable folder structure	
applications.	structure and relevant file names and how to	independently to organise all their files and use	
	reorganise their folders (renaming, deleting,	consistent file naming convention and version	
	moving files) as well as now to transfer files using	control when saving their files.	
	the Cloup	Students can keen backups of their work using the	
		students can keep backups of their work using the	
		share their work (Using email, using OpeDrive)	
		They can identify and recommend techniques on	
		how to stay safe when using the Internet including	
		how to choose a strong password, what	
		information is personal, how to access privacy	
		settings, how to block and report	
		abuse/cyberbullying/trolling/grooming/sexting.	
		They learn about network threats such as viruses,	
		trojan horses, identity thefts, phishing emails,	
		brute force attacks, dDos Attacks, social	
		engineering can recommend solutions on how to	
		minimise the risks caused by these network	
		threats.	